Efektivitas Penggunaan Nanomineral pada Pakan terhadap Peningkatan Performa Ayam: Review
Abstract
Penelitian dalam bidang pakan ternak terus banyak dilakukan untuk semakin meningkatkan efisiensi penggunaan pakan, salah satunya melalui penerapan nanoteknologi. Mineral berpartisipasi dalam beberapa proses biokimia dan merupakan bagian dari banyak enzim yang diperlukan untuk reaksi biokimia normal. Tujuan dari penulisan review ini adalah untuk mengulas aplikasi penggunaan nano mineral pada pakan ayam dan hubungannya terhadap performa ternak ayam. Hasil kajian menunjukkan bahwa salah satu permasalahan utama penggunaan bahan pakan sumber mineral konvensional adalah rendahnya bioavalabilitasnya, sehingga mineral dalam pakan masih cukup tinggi yang tidak dapat dicerna dan diserap dalam saluran pencernaan ternak ayam, yang menyebabkan mineral yang tidak dicerna tersebut kemudian dibuang melalui eksreta, sehingga menimbulkan polusi bagi lingkungan. Nanomineral mencoba menjadi solusi hal tersebut. Nanomineral memiliki bioavalabilitas yang tinggi, sehingga penggunaan dosisnya jauh lebih rendah dan lebih efisien dalam pakan. Hasil pengujian beberapa jenis mineral (Ca, Zn, Se, Cr, Fe, Ag, Cu) dalam bentuk nanopartikel dalam pakan ayam memberikan dampak positif bagi peningkatan produktivitas dan efisiensi penggunaan pakan untuk ternak ayam. Nanomineral menyebabkan penggunaan mineral lebih efisien dalam pakan serta menekan terjadinya pembuangan mineral melalui eksreta, sehingga dapat menekan polusi lingkungan. Hasil review ini disimpulkan bahwa pada dosis yang tepat nanomineral memberikan dampak positif bagi peningkatan produktivitas ternak ayam.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abd El-Hack, M.E., M. Alagawany., M. R. Farag., M. Emam., K. Dhama., M. Sarwar and M. Sayab. 2017. Nutritional and pharmaceutical applications of nanotechnology: Trends and advances. International Journal of Pharmacology. 13: 340-350.
Abd El-Hack, M.E., M. Alagawany., M. Arif., M. Emam., M. Saeed., M. A. Arain., F.A. Siyal., A. Patra., S.S. Elnesr and R.U. Khan. 2018. The uses of microbial phytases as a feed additive in poultry nutrition—a review. Annals of Animal Science. 18:639-658.
Abd El-Haliem,H.S., A. M. Faten., H.S. Attia., Saber and I.H. Hermes. 2020. Impacts of zinc oxide nano-particles supplementation in broiler diets on growth performance, some carcass characteristics and immune organs. Egyptian Journal Nutrition and Feeds. 23 (1): 113-122.
Abdelnour, S.A., M. Alagawany., N. M. Hashem., M.R. Farag., E.S. Alghamdi., F.U. Hassan., R.M. Bilal., S.S. Elnesr., M.A.O. Dawood and S.A. Nagadi. 2021. Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals. 11: 1916.
Abedini, M., F. Shariatmadari., M.A. Karimi Torshizi and H. Ahmadi. 2018. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. Journal of Animal Physiology and Animal Nutrition. 1–10.
Alagawany, M., S.S. Elnesr., M.R. Farag., R. Tiwari., M.I. Yatoo., M. Karthik., I. Michalak and K. Dhama. 2021. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health – a comprehensive review. Veterinary Quarterly. 41 (1): 1–29.
Ao, T and J. Pierce. 2013. The replacement of inorganic mineral salts with mineral proteinates in poultry diets. World’s Poultry Science Journal.3:69:5-16.
Arabi, F., M. Imandar., M. Negahdary., M. Imandar., M.T. Noughabi., H. Akbaridastjerdi and M. Fazilati. 2012. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Annals of Biological Research. 3:3679-3685.
Auffan, M., J. Rose., J.Y. Bottero., G.V. Lowry., J.P. Jolivet and M.R. Wiesner. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology. 4:634e41.
Bąkowski, M.,B. Kiczorowska., W. Samolińska., R. Klebaniuk and A., Lipiec. 2018. Silver and zinc nanoparticles in animal nutrition – a review. Annals Animal Science. 18(4): 879–898.
Baig, N., I. Kammakakam and W. Falath. 2021. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Material Advances.2:1821-1871.
Bayda S., M. Adeel., T. Tuccinardi., M. Cordani and F. Rizzolio. 2020. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. 25(112):1-15.
Bedford, M. 2000. Removal of antibiotic growth promoters from poultry diets: implications and strategies to minimise subsequent problems. World’s Poultry Science Journal. 56:347-365.
Bunglavan, S.J., A.K. Garg., R.S. Dass and S Shrivastava. 2014. Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Research International. 2(3):36-47.
Buzea, C., I. Ivan., P. Blandino and K. Robbie..2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2(4):17–71.
Cao, S.J., S. Xu., H.M. Wang., Y. Ling., J. Dong., R.D. Xia and H.H. Sun. 2019. Nanoparticles: Oral Delivery for Protein and Peptide Drugs. Pharmaceutical Science and Technology. 20(190):1-11.
Chen, H., J. Weiss and F. Shahidi. 2006. Nanotechnology in nutraceuticals and functional foods. Food Technology. 3:30-36.
Chen, X., E.T. Moran.1995. The withdrawal feed of broilers: Carcass responses to dietary phosphorus. The Journal of Applied Poultry Research. 4: 69-82
Cufadar, Y., R. Gocmen., G. Kanbur and B. Yildirim. 2019. Effects of dietary different levels of nano, organic and inorganic zinc sources on performance, eggshell quality, bone mechanical parameters and mineral contents of the tibia, liver, serum and excreta in laying hens. Biological Trace Element Research. https://doi.org/10.1007/s12011-019-01698-3.
Dal Bosco, A., S. Mattioli., A. Cartoni Mancinelli., E. Cotozzolo and C. Castellini. 2021. Extensive rearing systems in poultry production: the right chicken for the right farming system. A review of twenty years of scientific research in perugia university, Italy. Animals. 11(1281):1-25.
El-Deep, M.H., D. Ijiri., T.A. Ebeid and A. Ohtsuka. 2014. Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. Journal of Poultry Science. 53: 274-283.
Elkloub, K., M.E. Moustafa., A.A., Ghazalah and A.A.A. Rehan. 2015. Effect dietary nanosilver on broiler performance. International Journal of Poultry Science. 14(3):177-182.
Farag, M.R., M. Alagawany., M.E. Abd El-Hack., M. Arif., T. Ayasan., K. Dhama., A. Patra and K. Karthik. 2017. Role of chromium in poultry nutrition and health: beneficial applications and toxic effects. International Journal of Pharmacology. 13:907-915.
Fawaz, M.A., K.H. Südekum., H.A. Hassan and A.A.A. Abdel-Wareth. 2019. Effects of nanoparticles of zinc oxide on productive performance of laying hens. – a review. International Journal of Agricultural Science. 1 (1): 13-20.
Feng, M., Z.S. Wang., A.G. Zhou and D.W. Ai. 2009. The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum- epithelial cells in primary culture. Pakistan Journal of Nutrition. 8:1164-1166.
Fesseha, H., T. Degu and Y. Getachew. 2020. Nanotechnology and its application in animal production: a review. Veterinary Medicine. 5(2): 43-50.
Fotakis, G and J.A. Timbrell. 2006. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters. 160:171–177.
Gangadoo, S., D. Stanley., R.J. Hughes., R.J. Moore and J. Chapman. 2016. Nanoparticles in feed: progress and prospects in poultry research. Trends in Food Science and Technology. 58:115-126.
Ganjigohari, S., N. Ziaei., A.R. Ghara and S. Tasharrofi. 2017. Effects of nanocalcium carbonate on egg production performance and plasma calcium of laying hens. Journal of Animal Physiology and Animal Nutrition. 1–8. DOI: 10.1111/jpn.12731.
Gebriel, G.M., A.A. El-Fiky., S.M.S. Siam., E.M. Abou-Elewa and A.M. Hassan. 2020. Application of nano-selenium in layer diets to improve the productive performance, egg quality and immunological traits in chickens. Menoufia of Journal Animal, Poultry and Fish Produstion. 4: 43 – 58.
Gopi, M., B. Pearlin., R.D. Kuma., M. Shanmathy and G. Prabakar. 2017. Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology. 13: 724-731.
Grodzik, M., F. Sawosz., E. Sawosz., A. Hotowy., M. Wierzbicki., M. Kutwin., S. Jaworski and A. Chwalibog. 2013. Nanonutrition of chicken embryos. The effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles. International Journal of Molecular Sciences. 14:23033-23044.
Hafez, H.M and Y.A. Attia.2020. Challenges to the poultry industry: current perspectives and strategic future after the COVID-19 outbreak. Frontier in Veterinary Science. 7(516):1-16.
Hassan, H.M.A., A. Samy., A.E. El-Sherbiny., M.A. Mohamed and M.O. Abd-Elsamee. 2016. Application of nano-dicalcium phosphate in broiler nutrition: performance and excreted calcium and phosphorus. Asian Journal of Animal and Veterinary Advances. 11: 477-483.
Hassan, S., F. Hassan and M.S. Rehman.2019. Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biological Trace Element Research. 195:591–612.
Hassan, S., F.U. Hassan and M.S.U. Rehman. 2020. Nano-particles of trace minerals in poultry nutrition: potential applications and future prospects. Biological Trace Element Research. 195:591-612.
Hendrickson, O.D., S.G. Klochkov., O.V. Novikova., L.M. Bravova., E.F. Shevtsova., L.V. Safenkova., A.V. Zherdev., S.O. Bachurin and B.B. Dzantiev. 2016. Toxicity of nanosilver in intragastric studies: biodistribution and metabolic effects. Toxicology Letters. 241: 184–192.
Hett, A. 2004. Nanotechnology: Small Matter, Many Unknowns. Swiss Reinsurance Co. Zurich. 55 p.
Hidayat, C., Sumiati., E. Wina and A. Jayanegara, A. 2021a. Supplementation of dietary nano zinc phytogenic on performance, antioxidant activity, and population intestinal phatogenic bacteria in broiler chickens. Tropical Animal Science Journal.44(1):90-99.
Hidayat, C., Sumiati., E. Wina and A. Jayanegara. 2021b. The effect of nano Zn fitogenik addition on broiler diet to carcass traits, relative organ weights and haematological response. The 3rd International Conference of Animal Science and Technology. IOP Conf. Series: Earth and Environmental Science 788 (2021) 012036. 11pp. doi:10.1088/1755-1315/788/1/012036.
Hidayat, C., Sumiati., E. Wina and A. Jayanegara. 2021c. Characteristics of Nano Zn-Fitogenik (NZF) made by green synthesis process using guava leaves (Psidium guajava) for feed additives. 2nd International Conference on Animal Production for Food Sustainability 2021. IOP Conf. Series: Earth and Environmental Science 888 (2021) 012056.11 pp. doi:10.1088/1755-1315/888/1/012056.
Hooper, H.L., K. Jurkschat.,A.J. Morgan., J. Bailey., A.J. Lawlor and D.J. Spurgeon. 2011. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environment International.37:1111–1117.
Janer, G., E. Mas del Molino., E. Fernandez-Rosas., A. Fernandez, S. Vazquez-Campos. 2014. Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicology Letters. 228:103-110.
Jeevanandam, J., A. Barhoum., Y.S. Chan., A. Duresne and M. Danquah. 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology. 9: 1050–1074.
Khalid, K., X. Tan., H.F.M. Zaid., Y. Tao., C.L. Chew., D.T. Chu., M.K. Lam., Y.C. Ho., J.W. Lim and L.C. Wei. 2020. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 11(1) : 328-355.
Khan, I., K. Saeed and I. Khan. 2019. Nanoparticles: Properties, applications and toxicities Ibrahim. Arabian Journal of chemistry. 12(7):908-931.
Kool, P.L., M.D. Ortiz and C.A. Gestel.2011. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia Candida (Collembola) in relation to bioavailability in soil. Environmental Pollution. 159:2713–2719.
Kumar, K., A. Hosseindoust., M. Kim., K.Y. Kim., Y. Choi., S. Lee., S.Y. Lee., J.H. Lee., H.J. Cho., W.S. Kang and B. Chae. 2021. Nano-sized zinc in broiler chickens: effects on growth performance, zinc concentration in organs, and intestinal morphology. Journal of Poultry Science. 58: 21-29.
Kurnia, F., M. Suhardiman., L. Stephani and T. Purwadaria. 2012. Peranan nano-mineral sebagai bahan imbuhan pakan untuk meningkatkan produktivitas dan kualitas produk ternak. Wartazoa. 22(4): 187-193.
Larsson, S., M. Jansson and A. Boholm. 2019. Expert stakeholders’ perception of nanotechnology: risk, benefit, knowledge, and regulation. Journal of Nanoparticle Research. 21( 57):1-17.
Martínez-Ballesta, M., A. Gil-Izquierdo., C. García-Viguera and R. Domínguez-Perles. 2018. Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “smart-foods” for health. Foods. 7(72): 1-29.
Matuszewski, A., M. Łukasiewicz., J. Niemiec., M. Kamaszewski., S. Jaworski., M. Domino., T. Jasinski., A. Chwalibog and E. Sawosz. 2021. Calcium carbonate nanoparticles—toxicity and effect of in ovo inoculation on chicken embryo development, broiler performance and bone status. Animals.11(932):1-22.
Mura, S., D. Carta., P.P. Roggero., F. Cheli and G.F. Greppi. 2014. Nanotechnology and its applications in food and animal science. Italian Journal of Food Science. 26:91-102.
Najafzadeh, H., S.M. Ghoreishi., B. Mohammadian., E. Rahimi., M.R. Afzalzadeh., M. Kazemivarnamkhasti and H. Ganjealidaran. 2013. Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Veterinary World. 6: 534–537.
Patel, S., S. Jana., R. Chetty., S. Thakore., M. Singh and R. Devkar. 2017. Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug and Chemical Toxicology. 42:1–8.
Patra, A and M. Lalhriatpuii. 2020. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding—a review. Biological Trace Element Research. 197:233-253.
Patra, A.K. 2019. Are nanomaterials potential new generation antimicrobial feed additives in livestock ?. Indian Journal of Animal Health. 58(Special 2):105-120.
Radwan, N.L., T.A. Salah Eldin., A.A. El-Zaiat and M.A.S.A. Mostafa. 2015. Effect of dietary nano selenium supplementation on selenium content and oxidative stability in Table eggs and productive performance of laying hens. Internation Journal of Poultry Science. 14(3): 161-176.
Ramiah, S.K., E.A. Awad., S. Mookiah and Z. Idrus. 2019. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poultry Science. 98:3828–3838.
Rosi, N.L and C.A. Mirkin. 2005. Nanostructures in biodiagnostics. Chemical Reviews. 105:1547-1562.
Sabourian, P., G. Yazdani., S.S. Ashraf., M. Frounchi., S. Mashayekhan., S. Kiani and A. Kakkar. 2020. Effect of physico-chemical properties of nanoparticles on their intracellular uptake. International Journal of Molecular Science. 21(8019):1-20.
Saleh, A.A and T.A. Ebeid. 2019. Feeding sodium selenite and nano-selenium stimulates growth and oxidation resistance in broilers. South African Journal of Animal Science. 49 (1):176-184.
Sawosz, E., M. Grodzik., M. Zieliska., T. Niemiec., B. Olszaska and A. Chwalibog. 2009. Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. European Poultry Science. 73(3):208–213.
Sawosz, E., M. Łukasiewicz., A. Łozicki., M. Sosnowska., S. Jaworski., J. Niemiec., A., Scott., J. Jankowski., D. Józefiak and A. Chwalibog. 2018. Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archives of Animal Nutrition.1-11. DOI: 10.1080/1745039X.2018.1505146.
Shrivastava, S., T. Bera., A. Roy., G. Singh., P. Ramachandrarao and D. Dash.2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18:225103.
Singh, S.P., M. Kumari., S.I. Kumari., M.F. Rahman., M. Mahboob and P. Grover. 2013. Toxicity assessment of manganese oxide micro and nanoparticles in wistar rats after 28 days of repeated oral exposure. Journal of Applied Toxicology. 33(10):1165–1179.
Sirelkhatim, A., S. Mahmud., A. Seeni., N.H.M. Kaus., L.C. Ann., S.K.M. Bakhori., H. Hasan and D. Mohamad. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Letters. 7:219-242.
Sirirat, N., J. Lu., T. Hung and T. Lien.2013. Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention, and tissues minerals accumulation in layer chickens. Journal of Agricultural Science (Toronto). 5:150-159.
Sizova, E.A., S.A. Miroshnikov., S.V. Lebedev., A.V. Кudasheva and N.I. Ryabov. 2016. To the development of innovative mineral additives based on alloy of Fe and Co antagonists as an example. Agricultural Biology. 51:553-562.
Sohair, A.A., M.A. El-Manylawi., M. Bakr and A.A. Ali. 2017. Use of nano-calcium and phosphors in broiler feeding. Egypt Poultry Science. 37(II):637-650.
Stoimenov, P.K., R.L. Klinger., G.L. Marchin and K.J. Klabunde.2002. Metal oxide nanoparticles as bactericidal agents. Langmuir. 18:6679-6686.
Suttle, N.F. 2010. The mineral nutrition of livestock 4th ed. CABI Publishing, Oxfordshire.
Swain, P.S., S.B.N. Rao., D. Rajendran., G. Dominic and S. Selvaraju. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition. 2:134-141.
Świątkiewicz, S., A. Arczewska Włosek and D. Jozefiak. 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World’s Poultry Science Journal. 70:475-486
Uniyal, S., N. Dutta., M. Raza., S.K. Jaiswal., J.K. Sahoo and K. Ashwin. 2017. Application of nano minerals in the field of animal nutrition: A Review. Bulletin of Environment, Pharmacology and Life Sciences. 6[4] : 04-08.
Vijayakumar, M.P and V. Balakrishnan. 2014. Effect of calcium phosphate nanoparticles supplementation on growth performance of broiler chicken. Indian Journal of Science and Technology. 7(8): 1149–1154.
Vinus and N. Sheoran. 2017. Role of nanotechnology in poultry nutrition. International Journal of Pure and Applied Bioscience. 5(5): 1237-1245.
Wang, T., X. Long., Y. Cheng., Z. Liu and S. Yan. 2014. The potential toxicity of copper nanoparticles and copper sulphate on juvenile epinephelus coioides. Aquatic Toxicology. 152:96–104.
Xia, T., M. Kovochich., M. Liong., L. Madler., B. Gilbert., H. Shi., J.I. Yeh., J.I. Zink and A.E. Nel. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. American Chemical Society Nano. 2: 2121–2134.
Zha, L.Y., J.W. Zeng., X.W. Chu., L.M. Mao., H.J. Luo. 2009. Efficacy of trivalent chromium on growth performance, carcass characteristics and tissue chromium in heat-stressed broiler chicks. Journal of the Science of Food and Agriculture. 89:1782-1786.
Zhao, C.Y., S.X. Tan., X.Y. Xiao., S.X. Qiu., J.Q. Pan and Z.X. Tang.2014. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research. 160:361-367.
Zhu, W and N.G. Richards. 2017. Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochemistry. 61:259–270.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.